Today's agenda

- Introduction to Nordic Harmonization of LCA Maria Tiainen, Finnish Ministry of the Environment
- Introduction to webinar and project overview– Morten Ryberg, Sweco DK
- Findings and recommendations
 - LCA practice and regulations on the Nordic countries Kai Kanafani, BUILD
 - Key variables for setting limit values and recommendations on a process for setting and following limit values for buildings– Maria Balouktsi, BUILD
 - Recommendations for environmental building stock monitoring –
 Nicolaj Langkjær, Sweco DK
- **O&A and next steps** Morten Ryberg, Sweco DK

Nordic Harmonization of LCA - Limit Values and Monitoring of decarbonization in the building stock

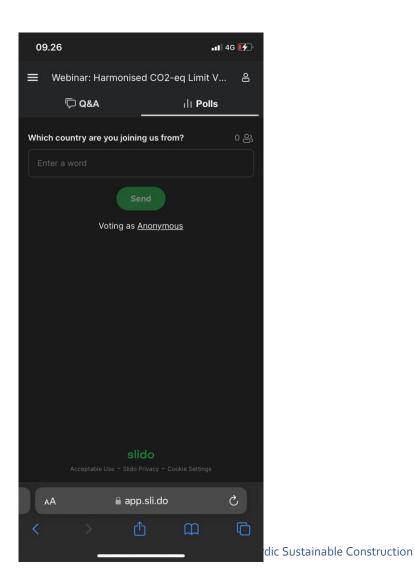
Sweco, BUILD, EFLA and LCA Support 26 01 2024

Nordic Sustainable Construction

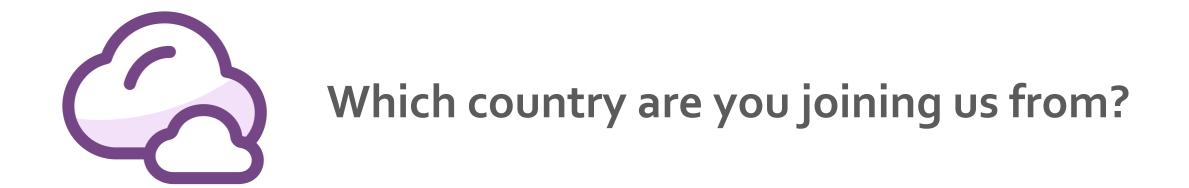
Practicalities

This webinar is organized on Teams

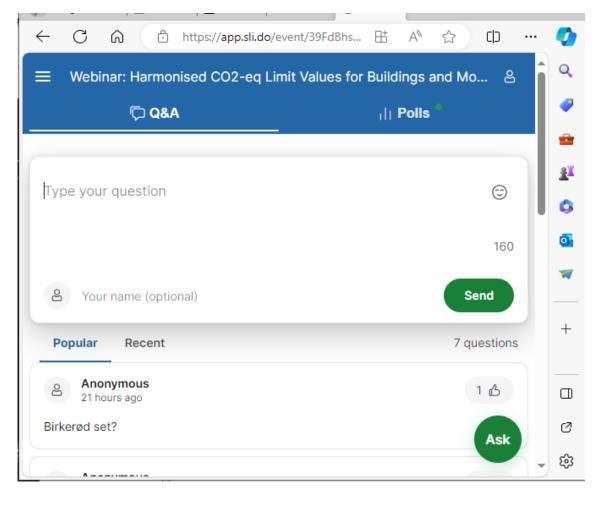
Please keep your microphone muted on the Teams channel when you are not speaking. Please do not write comments and questions in the Teams chat Please write comments and questions using our Slido Q&A, Try to place reference to the slide or content that your question or comment is referring to


Join at **slido.com #4196 709**

We will note down and, if possible, answer all questions in the Slido Q&A

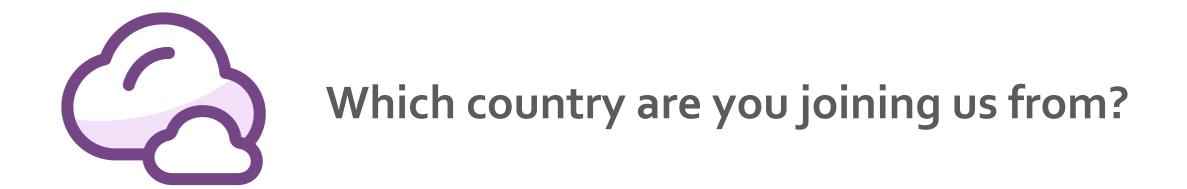

Using Slido for polls

~	С	á ô	https://app.sli.d	o/event/39FdBhs	Et A	₩ ☆	()	
≡	Webi	nar: Harmo	nised CO2-eq	Limit Values for	Building	gs and Mor	ni 8	
		r Q 8	A		di P	Polls		
Which country are you joining us from? 1 용								
Er	Enter a word							
Send								
Voting as <u>Anonymous</u>								
				- l'el -				
				slido Iido Privacy - Cookie Se	ettings			



Using Slido for Questions and Comments

	09.27				∎∎ 4G	[⁄],				
	×	A	sk th	e spe	aker					
09.27	Que	estior	<u>ຼາ</u> abo	ut						
Webinar: Harmonised CO2-eq Limit \										4.45
C Q&A II Polls										145
svare på spørgsmål	MR	Mo	orten R	yberg					Send	
Morten Ryberg 21 hours ago Teat										
Morten Ryberg 21 hours ago Tt					ê app	.sli.do				
Morten Ryberg		\sim								ок
21 hours ago		_	_		_	_		_	_	_
	1	2	3	4	5	6	7	8	9	0
Morten Ryberg	-	/	:	;	(kr	&	@	"
Question about	#+=			,			!	′		\otimes
alida	ABC				spa	ace			retu	rn
Question sent	¢	€							(



(i) Start presenting to display the audience questions on this slide. Nordic Sustainable Construction

(i) Start presenting to display the poll results on this slide. Nordic Sustainable Construction

Limit values and decarbonization of the building stock Introduction

Morten Ryberg Sweco

Nordic Sustainable Construction 42

What type of organisation are you part of ?

(i) Start presenting to display the poll results on this slide. Nordic Sustainable Construction

Nordic Harmonisation of LCA

Analysis of Nordic LCApractices

Data for LCA

2

 (\rightarrow)

BIM for LCA calculating the climate impact of buildings through digitalization

 $\left(\rightarrow \right)$

3

GHG limit values and reporting of the decarbonizati on of the Nordic building stock

Task 4 Overview

Please pose questions and comments in Slido slido.com #4196 709

Setting and assessing limit values

Analysis of the different regulatory needs and LCA requirements

Analysis of variables that impact limit values

Recommendations for an optimal process for setting and following limit values for buildings

4-3 Report on monitoring decarbonization of the building stock

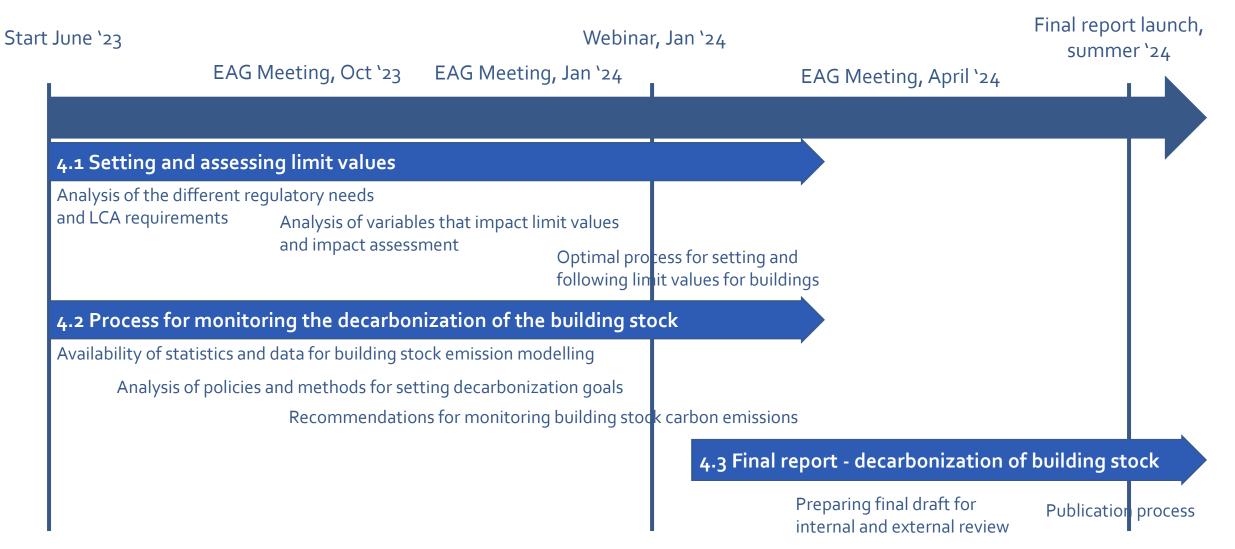
Approaches and recommendations for monitoring the decarbonization

Recommendations for setting limit values to incentivize decarbonization of properties

4 2 Process for monitoring the decarbonization of the building stock

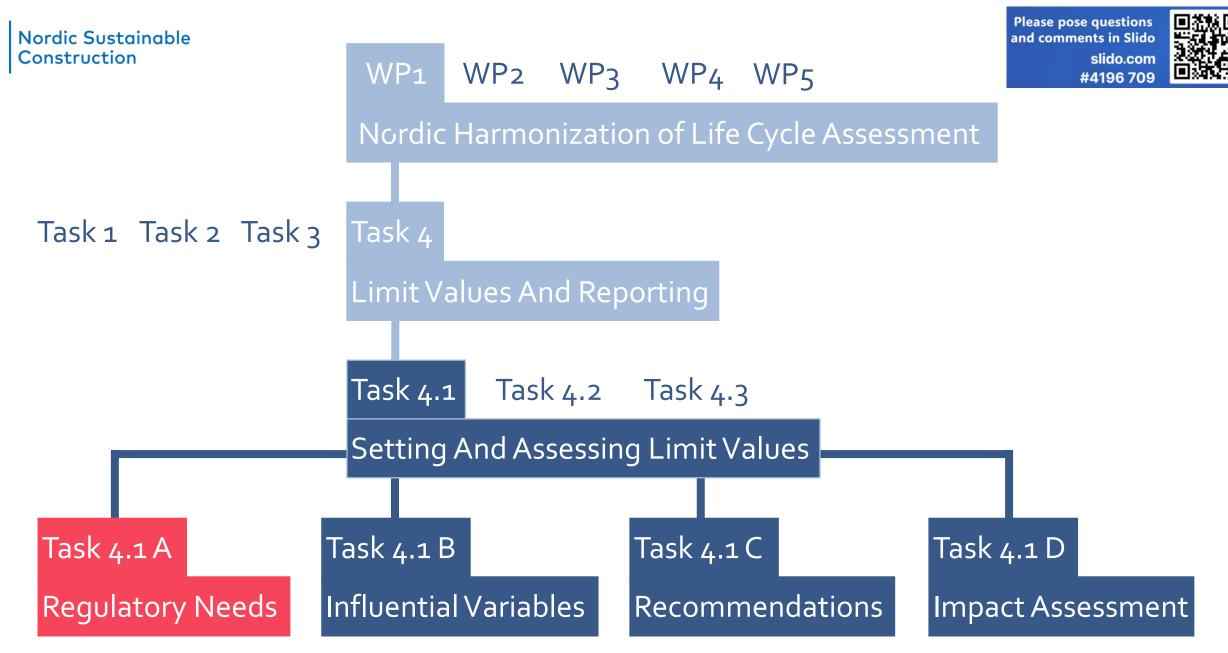
Analysis of policies and methods for setting decarbonization goals

Utilization of statistics and data for monitoring building stock carbon emissions


Recommendations on process for monitoring decarbonization of the building stock

Overall Project Timeline

What type of organisation are you part of ?


(i) Start presenting to display the poll results on this slide. Nordic Sustainable Construction

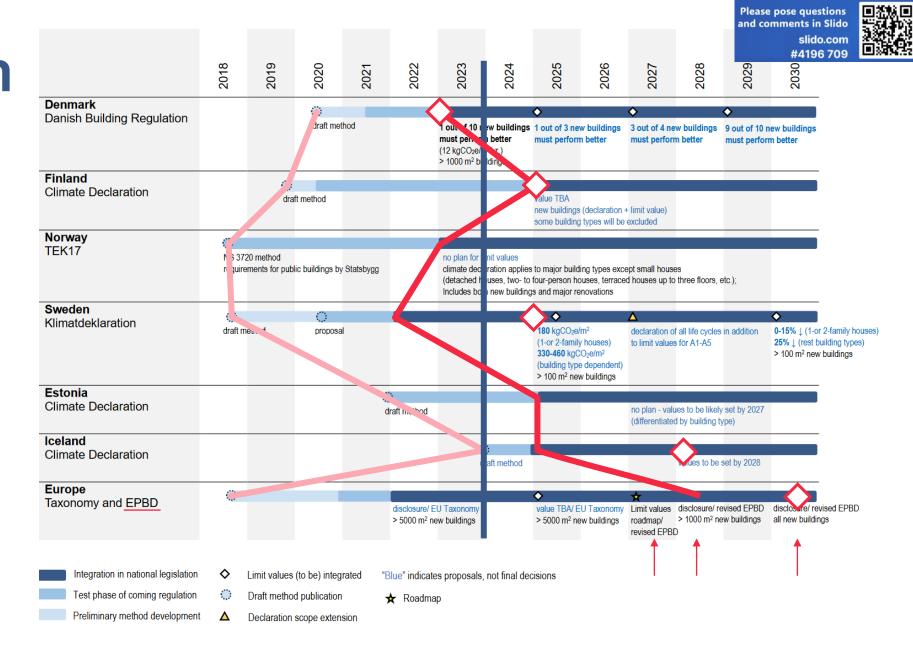
- LCA methods and limit values

Kai Kanafani & Maria Balouktsi BUILD AAU

Nordic Sustainable Construction 42

-

Task 4.1 A


Current approaches and harmonization potential

- Current status and roadmap for building carbon regulation
- National LCA definitions
- Preconditions for carbon regulation

Legislation schedule

Buildings covered

BUILDINGTYPE	DENMARK	ESTONIA	FINLAND	ICELAND	NORWAY	SWEDE	N
	BR18	Proposed climate declaration	Proposed climate declaration + limit value	Proposed climate declaration	TEK17	Proposed limit values 2025 (likely in line with climate declaration 2022)	Climate declaration 2027 (Boverket's proposal)
SINGLE-FAMILY HOME	✓ 4	-	-	\checkmark	-	√1	
OTHER RESIDENTIAL BUILDING	✓ 4	✓	✓	✓	✓	\checkmark 1	
OFFICE	✓ 4	✓	✓	✓	\checkmark	\checkmark 1	
RETAIL AND RESTAURANT	✓ 4	✓	✓	✓	✓	\checkmark_1	
SCHOOL AND DAYCARE	✓ 4	✓	✓	✓	\checkmark	$\sqrt{1}$	
LABORATORY	✓ 4	✓	✓	✓	\checkmark	√1	
HOSPITAL AND HEALTH	✓ 4	✓	✓	✓	\checkmark	\checkmark 1	
SPORTS FACILITIES	✓ 4	√	✓	✓	\checkmark	\checkmark 1	
CULTURAL AND OTHER PUBLIC	✓ 4	✓	4	✓	✓	✓¹ (some public authoritie	c are every tod
RELIGIOUS	✓ 4	-	✓	✓	✓		s are exempted)
INDUSTRIAL	✓ 4	-	<u>-</u>	✓	\checkmark	-	-
SUMMER COTTAGES	-	- -	-	-	√ 3	√1	
OTHER	✓ 4	✓		✓	✓	√1	
RENOVATION PROJECTS	-	-	-	√2	\checkmark	-	√2
	2023-2025:						
SIZE OF BUILDINGS	> 1000 M ²	uncoasified	no size requirement, just	unspecified, buildings under scope classes 2 and 3	no size requirement, just	$\sim 100 \text{ m}^2$	
SIZE OF BUILDINGS	From 2025:	unspecified	building type	in BR	building type	> 100 m ²	-
	under political negotiation						
LIMIT VALUE SCOPE			ptions apply n building permit is needed (ad	dditional exemption rules for Sv	veden)		

PROPOSED LIMIT VALUE SCOPE

PROPOSED CLIMATE DECLARATION SCOPE

Included when in blocks 3)

Only buildings subject to energy requirements 4)

Compliance system

	DENMARK	ESTONIA	FINLAND	ICELAND	NORWAY	SWEDEN
		(PROPOSED)	(PROPOSED)	(PROPOSED)		
TECHNICAL COMPLIANCE CONTROL	10% of cases checked	Not decided yet	Not decided yet	Not decided yet	Yes	10 % of cases checked
EXTERNAL VERIFICATION	No	Not decided yet	Not decided yet (possibly BIM file)	Not decided yet	No	No
REPORTING STAGE	As-built	Building permit	Building permit + As-built	Building permit + As-built	As-built	As-built
PUBLIC BUILDING LCA REGISTER	No	Not decided yet	Not decided yet	Not decided yet	No	Yes

Carbon limit approach

Target approach (top-down)

Panetary boundary for Climate Change National sector-specific carbon budgets

Limit value trajectory

Empirical approach (bottom-up)

Observation of best practice (case sample / archetypes) Trajectory based on observed distribution

> Examples of target-based initiatives: <u>Reduction Roadmap (DK)</u> <u>DG Environment report (EU)</u>

Selected technical variables

Reference unit

Varies considerably

Bound to existing building regulations

DK: Area correction for adjacent spaces

EU/Level(s) requires Usable Floor Area (UFA)

Scenario-based climate data

All countries propose to use future scenarios for module B6 (also required by Level(s))

No country proposes this for other modules (e.g. B₄)

Energy exported to grid Included in DK (module D), FIN (Handprint) SWE: Declared separately, since B6 is lacking EU/Level(s): Exported energy in module D

How to enable the industry to perform compliant LCA?

1) Experience, competence, education
 2) Precedence, voluntary schemes
 3) Available data infrastructure

SCOPE

Life cycle

NO/SWE omit EoL stages

DK/FIN/IS include biogenic carbon

All lack some use-stage modules

EU/Level(s) require full scope

Building and processes

FIN/SWE omit site preparation and evt. deep foundations

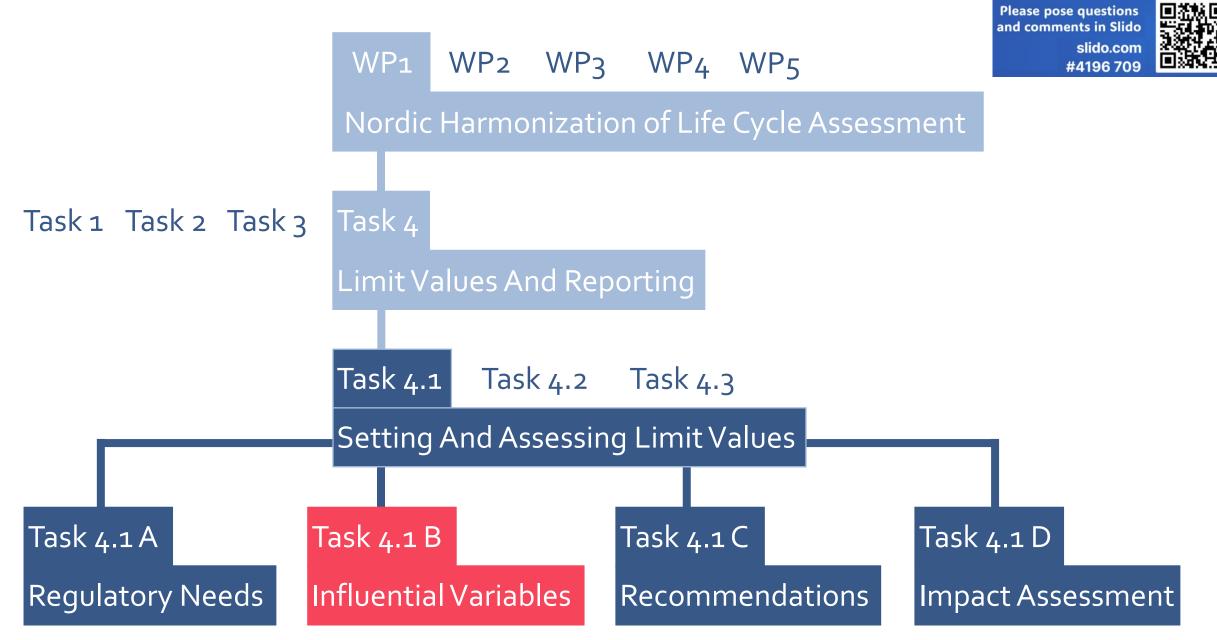
SWE omits services in small buildings

FIN/SWE include fixed furniture

DATA INFRASTRUCTURE

Generic module impacts Novel modules A₄-5, C₁-2 (FIN, EST, DK*) Allowed for as-built reporting (all: Yes)

Generic inventory data


Material quantity and design (DK: informative) Product service life (FIN, EST, DK)

Generic impact data

Construction products (FIN, EST, SWE, DK) Building services (DK) Transport processes (DK*, FIN, SWE) A5 energy or waste (EST, FIN, NO, SWE, DK*)

Calculation tools

Pivotal role of tools in all countries

Task 4.1 B Analysis of variables

Literature study on existing limit value reports

Existing limit value reports from Nordic countries and some other European countries to collect the parameters/variables identified as having a notable influence in each context

Parameter analysis

performed with two generic case models, based on a typical apartment building and a detached home. Base: real cases, adjusted to represent more straightforward and simple models

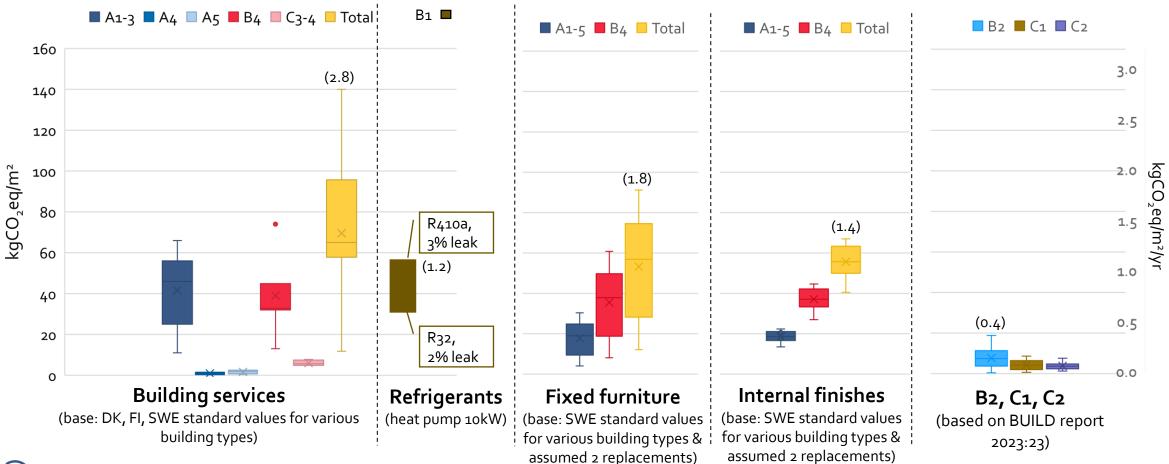
	BUILDING STOCK DATA	Building stock approaches (prons/cons)	Ø.
	(as a basis for limit values)	Building inventory quality	Ø.
		Foundation types/ site preparation	eg.
		Basement parking	Ø.
	66005	Landscaping/ external works	Ø
	SCOPE (building parts, life cycle processes)	Construction site process (A5)	Ø.
		Building services and refrigerants	Ø
		Internal finishes/ fixed furniture	Ø.
		Often missing B/C modules	ØD.
	METHOD	Reference unit	Ø.
	(normalisation, handling of scenario-based future processes)	Future emissions discounting	Ø.
		Future decarbonisation scenarios	ß
	CLIMATE DATA	Generic climate data	Ø.
		Foundations/ Internal walls (amount)	Ĩä
	BUILDING DESIGN	Structural frame/ Facade (type)	Ĩä
		Basements/ Balconies (presence)	Ĩ
	LIMIT VALUE	Best available technology today	ß
	PROGRESSION (future technologies, design, etc.)	Future technology	Ø.

Building stock data for first generation limit value(s):

two broad approaches for creating a building data base

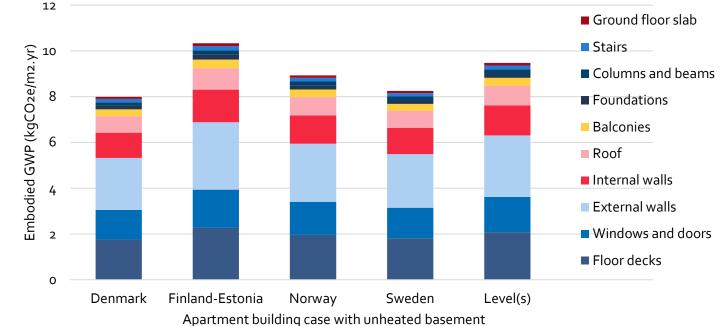
	Sampling/ Real buildings	Archetype
Cases sample needed	Large, necessary for validity	Small, only needed for verification
Systematic error probability	Low, due to specific case analysis	High, due to complex theoretical modelling
Parameter control	Low-moderate, large samples allow varying the emission data and the share of cases with certain properties (i.e. structural frame) depending on the depth of data available	High, building specifications can be changed at will, though requiring high technical expertise
Suitability for as- is analysis of the building stock	Without mandat. declarations: Low-moderate, representativity depends on case number and selection, related national statistics needed With mandat. declarations: High, due to a complete sample	Low-moderate, representativity depends on data input
Suitability for developing building stock scenarios or top- down target- based limit values	Moderate, depending on available best practice cases, however difficult to isolate cause/effect of parameters Optional: emission data and case selection (i.e. structural frame) allow scenarios	High , due to high parameter control, though requiring high technical expertise

Scope context- and location-specific aspects


EXAMPLES OF MAXIMUM CONTRIBUTIONS INDICATED IN NATIONAL		contribution	Max absolute impact	
STUDIES (dependent on scope and building type)		(%)	(kgCO ₂ e/m²/yr.)	Country (report)
 Deep foundations/ Soil stabilisation Should the limit value influence suitable construction locations / zoning? 	up to	30%	> 4	FI (Bionova report, 2021)
2. Basement parking Should the limit value affect available parking space?	up to	17%	> 1.7	DK (BUILD 2023:21)
3. External works/ Landscaping <i>Should the limit value affect landscaping and infrastructure?</i>	up to	28%	> 3	NO (ZEN report, 2021)
4. Construction site (A5) Should the limit value interfere with site conditions?	up to	18%	> 1.7	DK (BUILD 2023:14)

Significant influence on total GWP, but what aspects should the limit value affect?

Scope Often missing building parts and B/C modules


- Excluding replacements (B4) in the scope undermines the relevance of certain building items
- Refrigerant leakage (B1) can significantly increase the contribution of building services to buildings' whole life impact

Method Reference area unit

- Big differences, implications for basements, balconies, etc.
- normalizing results per resident or building user could help account for how efficiently the space is used

LCA results normalized (scope, data) using different reference area units; Nordic countries & LEVEL(s)

Nordic Sustainable Construction

Method Approach to future scenarios (B and C modules)

A shift towards more dynamic considerations are discussed in some countries...

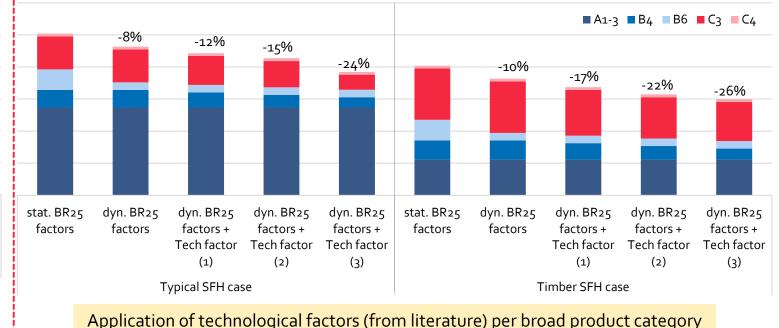
■ A1-3 ■ B4 ■ B6 ■ C3 ■ C4

A. Future emissions with simplified discounting :

- ~10-20% lower LCA result when simplified discount factors are applied
- promotes use of wood as C3 impacts (+1) are also discounted

-9%

12,00

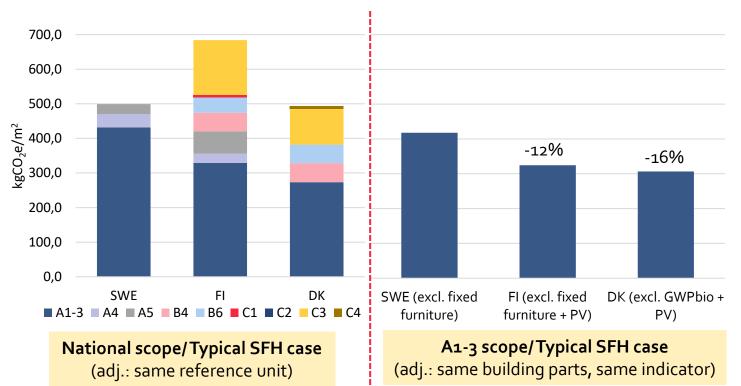

10,00

8,00

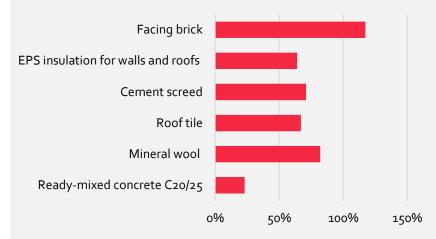
<gC₀₂eq/m²/yr.

B. Future emissions with material type specific decarb. scenarios :

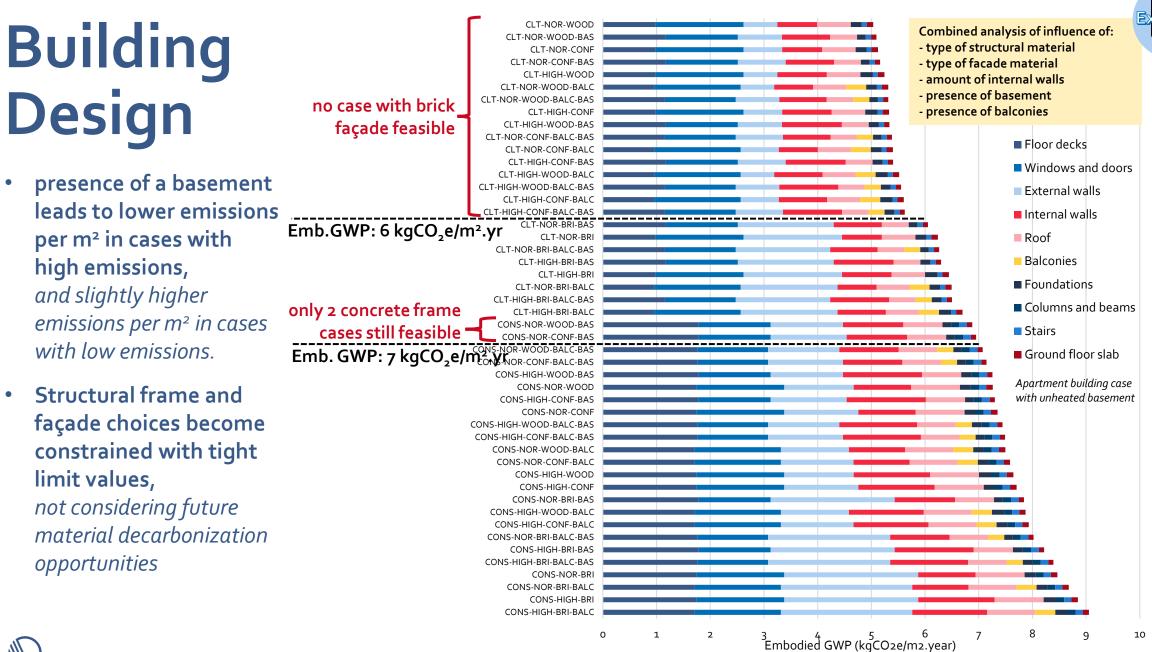
- Up to ~ 25% lower LCA result when considering the most ambitious future decarb. for both operational and embodied part (B4, C3 of non-wood products)
- more product-neutral method ,-1/+1 method for wood is preserved



-19% 6,00 4,00 2,00 0,00 Danish French Danish French approach approach approach approach (BR25) (BR25) Typical SFH case Timber SFH case Application of the French simplified discount factors as an example Nordic Sustainable Construction

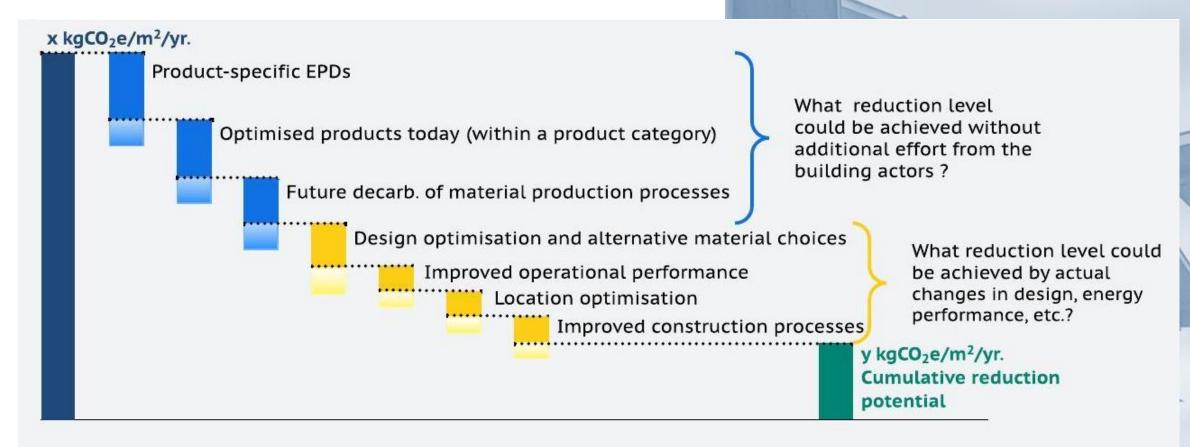

Climate Data

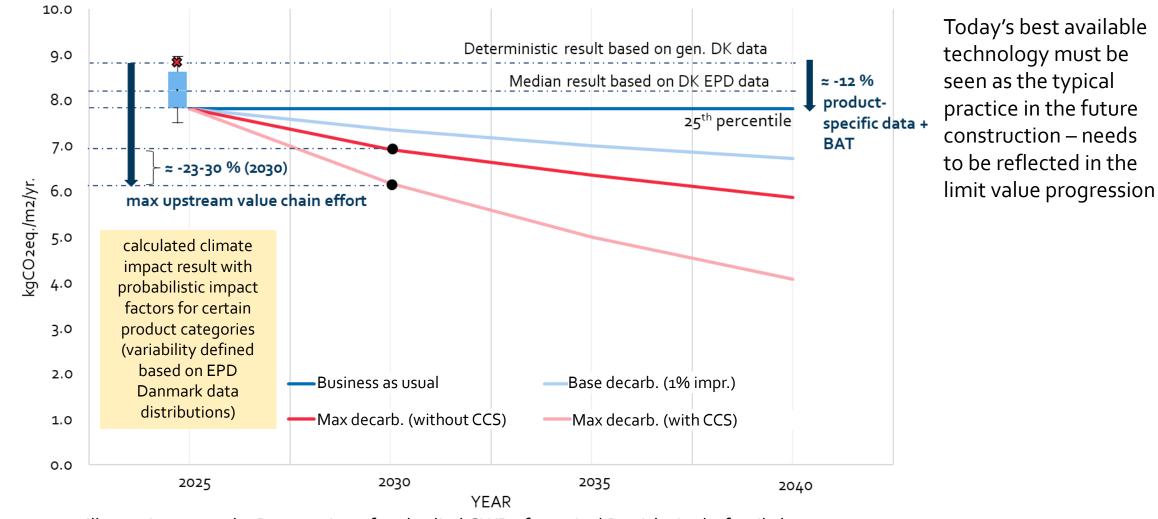

- Even if Nordic countries were using the same assessment scope and method, comparability is still hindered by differences in data
- Great variations in some values used for similar products in national gen. databases – reflect differences in conservative factors, background data, or actual differences in the products



Examples of notable differences between SWE and DK (new) gen. product impact data

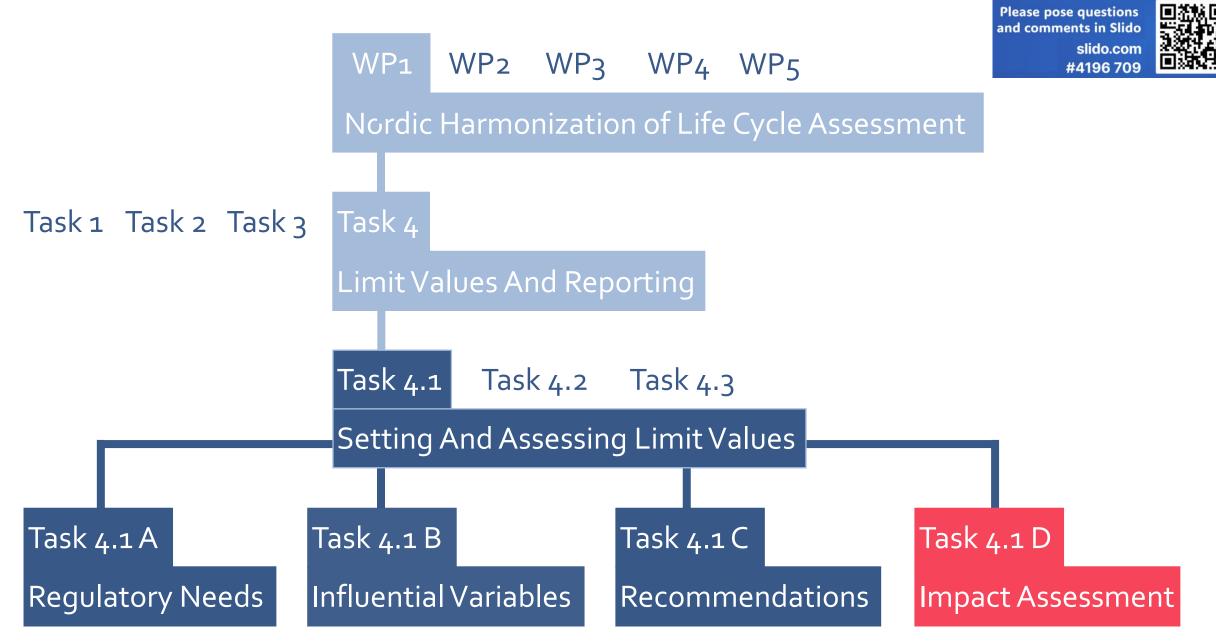
Examples of notable differences between SWE and FI gen. product impact data

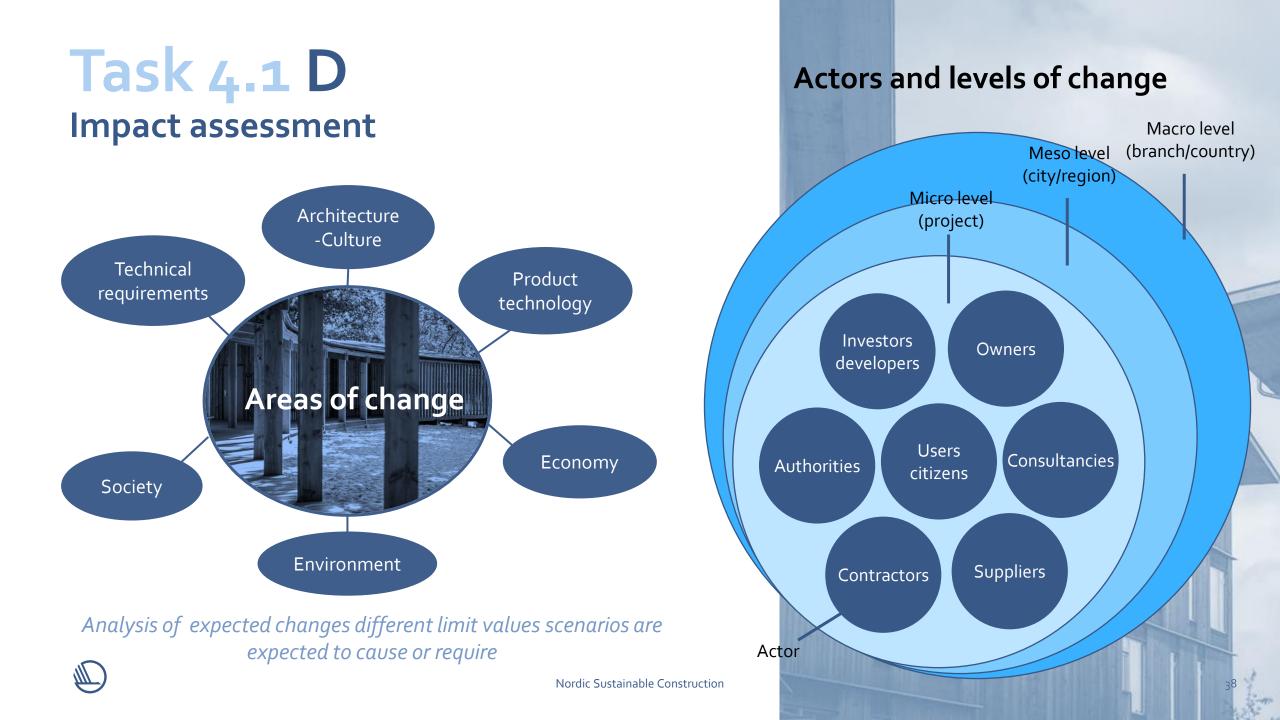



ample

Carbon Limit Progression

How much can limit values be tightened?

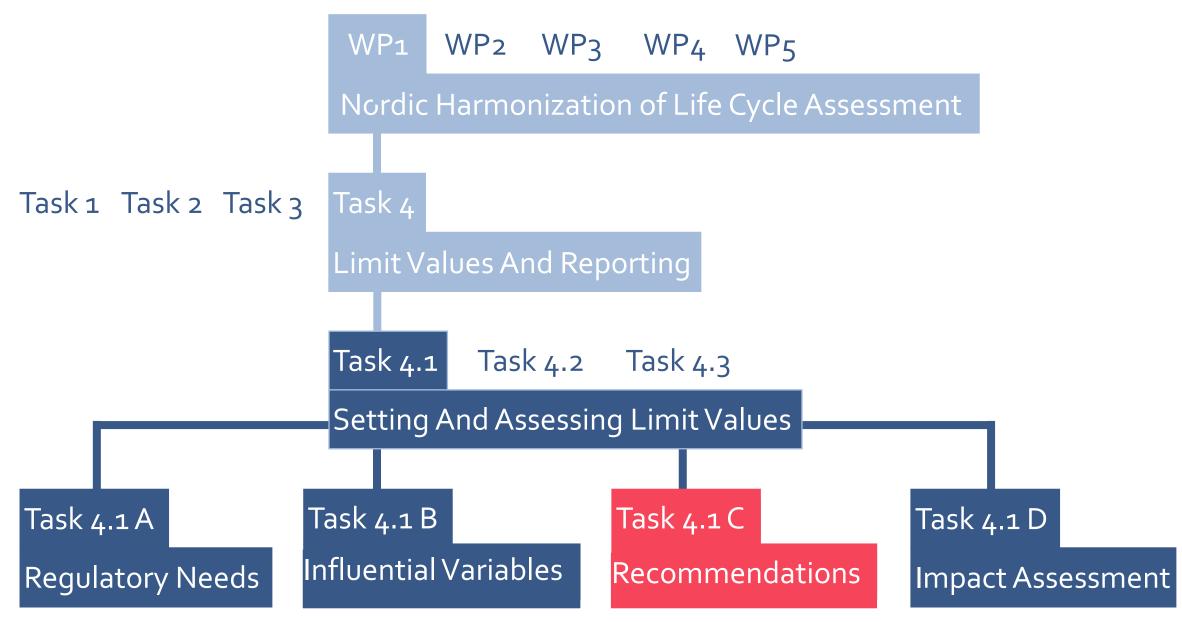

Possible reduction with no great effort


Illustrative example: Progression of embodied GWP of a typical Danish single-family house case

Щ

Example

What variables are suited to be harmonized across regions?


(i) Start presenting to display the poll results on this slide. Nordic Sustainable Construction

What location-sensitive variables should be out of scope for the initial limit values?

(i) Start presenting to display the poll results on this slide. Nordic Sustainable Construction

For developing and implementing limit values

VARIABLE	RECOMMENDATION	HARMONIZATION
Competence building	Voluntary declaration scheme Iterative stakeholder feedback Academic and professional education	EU: New learning material is being developed in ongoing EU-project
Stakeholder involvement	Consultation groups for evaluating experiences and discussing key decisions	
Generic data	Generic impact data for products and processes close data gaps Generic service life secure harmonized assessments Generic process/module impact data and standard components and systems aid implementation	Nordic: structure and content of the national generic climate databases (e.g. product categories and variants, indicators, applied conservative factors), guidelines for EPD developers by the national program operators
EPD availability & digitalization	EPD data shall be digitally accessible and exchangeable for improved feasibility	EU: Construction Products Regulation and EcoDesign Directive will make environmental product data mandatory in the long term
Building model	Define structure and level of detail of building model Use classification standard and allow conversion	Nordic: Common platform with mapping tables for conversion
	Nordic Sustainable Construction	EU: Level(s) may define overall principles

For developing and implementing limit values

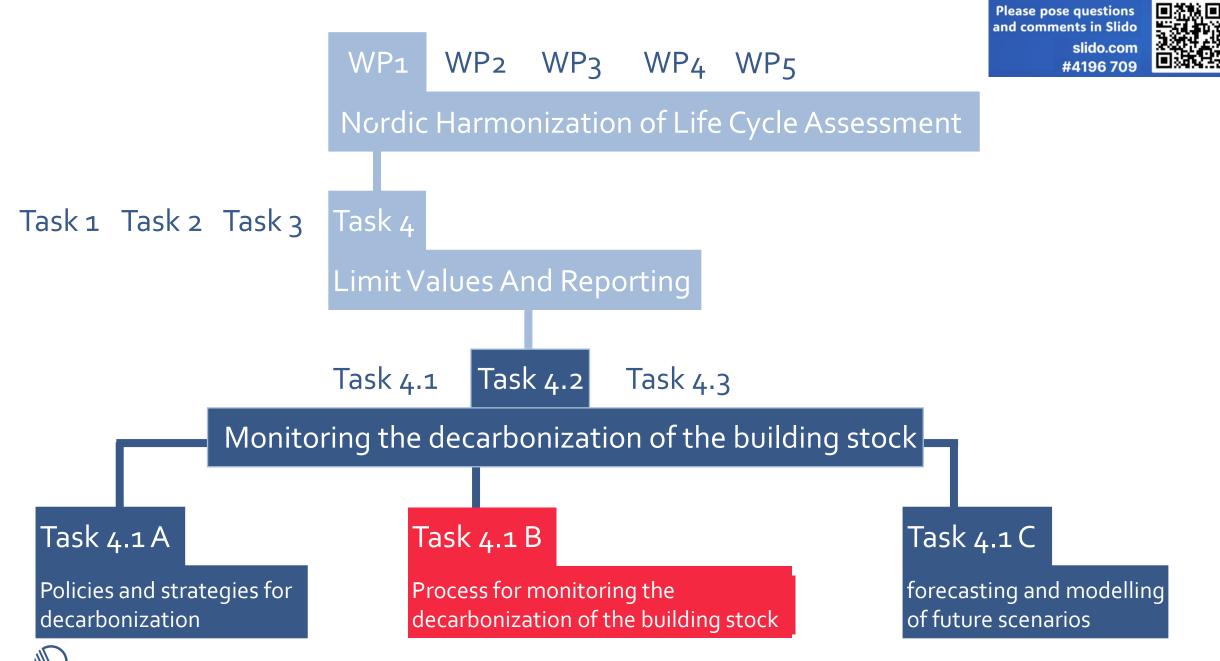
VARIABLE	RECOMMENDATION	HARMONIZATION
Building database	Collect detailed building stock data Existing LCA from voluntary schemes might be useful Define sample and eventually archetypes representative for building stock Case analyse parameters may relate to limit value differentiation	Nordic: Possible Nordic case database with harmonized parameters and structure will boost learnings on low-carbon solutions and barriers
Carbon limit differenti- ation	Building sample analysis shall support the necessary differentiation after type, size or other building parameters The actual optimization potential might differ between buildings	Nordic: Common criteria for differentiating limit values EU: EPBD requires limit value roadmaps to per building type and climate zone
Trajectory towards full scope	Implementation of declarations/limit values may require a gradually expanding scope Alternatively, generic/standard data and definitions can fill gaps and speed up implementation	EU/Nordic: Trajectories depend much on the harmonization of life cycle scope and scenarios

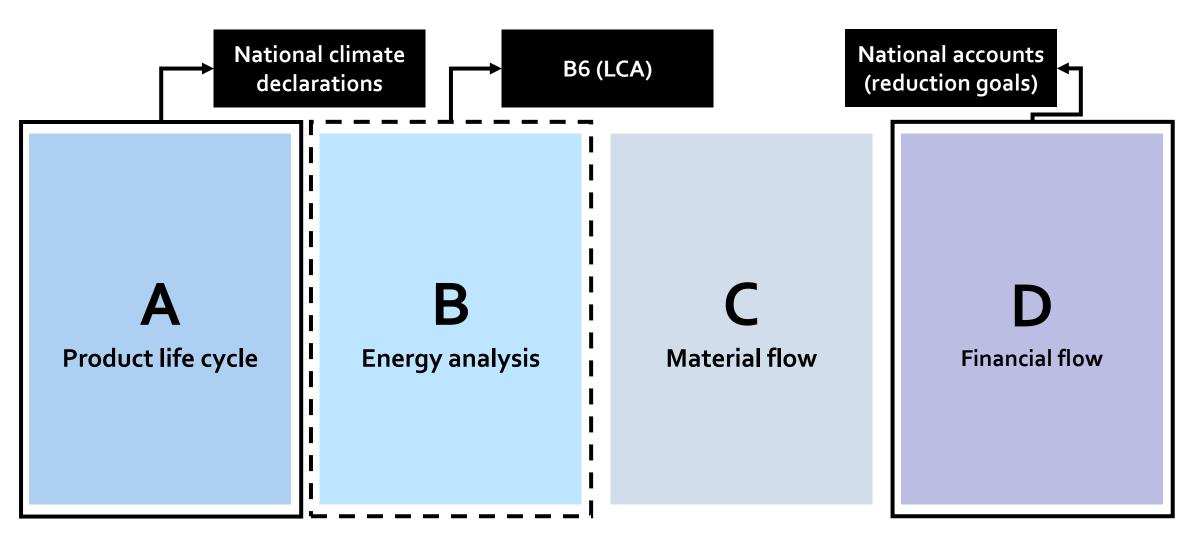
For developing and implementing limit values

VARIABLE	RECOMMENDATION	HARMONIZATION
Building reference area	Also declare results per useful floor area (UFA) to get EPBD-ready Analyze adjacent spaces (basement, attic, external stairs/ramps and balconies) Optional: Consider occupancy-related units (e.g. impact per user) to reduce total area	EU: UFA required for mandatory declarations for >1,000 m² buildings by 2028
Cost- effectiveness	Disclose roadmap for scope and limit values early on Monitor industry readiness Monitor building stock for calibrating feasible carbon levels	EU: EPBD requires national limit value roadmaps by 2027 – principles yet to be defined Nordic: Different national decarbonization goals and pathways have to be respected
Carbon regulation of renovations	Develop carbon declaration method Test regulation on voluntary basis	Nordic: Align scope, method and data

Please pose questions and comments in Slido slido.com

#4196 709


42


- Monitoring the decarbonization of the building stock

Nicolaj Hostrup Langkjær Sweco

Nordic Sustainable Construction

Environmental building stock modelling

Which environmental building stock modeling approach do you see best fit for assessing decarbonization efforts?

Building stock carbon monitoring

Archetype modeling with LCA/energy modelling (Bottom up)

Archetypes with emissions factors are defined. Monitoring on building stock level is achieved by utilizing data on newly added m₂ pr. archetype to the building stock

Sample LCA/Energy model(Bottom up)

Sampling carbon emission reporting (climate declaration). Monitoring is enabled with complete sample

Financial modeling (EIOA) (Top down)

Typically, environmental input-output analysis. Emission factors are accounted to financial flows. Monitoring is already established

 CO_2

Building stock carbon monitoring

Archetype modeling with LCA/energy modelling (Bottom up)

Archetypes with emissions factors are defined. Monitoring on building stock level is achieved by utilizing data on newly added m2 pr. archetype to the building stock

Sample LCA/Energy model (Bottom up)

Sampling carbon emission reporting (climate declaration). Monitoring is enabled with complete sample

Financial modeling (EIOA) (Top down)

Typically, environmental input-output analysis. Emission factors are accounted to financial flows. Monitoring is already established

Financial flow method

Product LCA method

Nordic Sustainable Construction

Building stock carbon monitoring

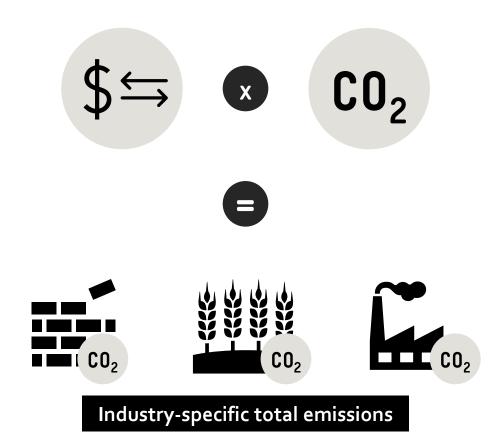
Archetype modeling with LCA/energy modelling (Bottom up)

Archetypes with emissions factors are defined. Monitoring on building stock level is achieved by utilizing data on newly added m₂ pr. archetype to the building stock

Sample LCA/Energy model (Bottom up)

Sampling carbon emission reporting (climate declaration). Monitoring is enabled with complete sample

Financial modeling (EIOA) (Top down)


Typically, environmental input-output analysis. Emission factors are accounted to financial flows. Monitoring is already established

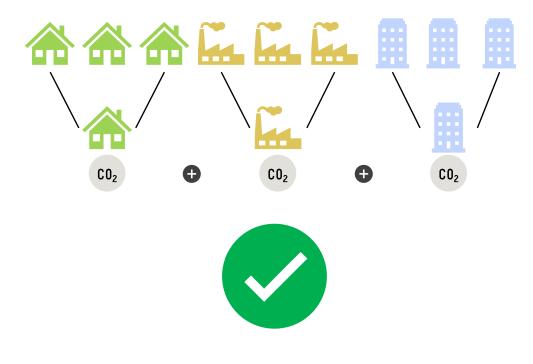
Possibility to investigate effect on macro level

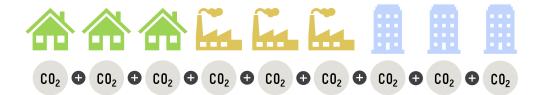
Possibility to investigate cause and effect on building level

Financial flow modeling (EIOA)

 Reporting is already established (national accounts)

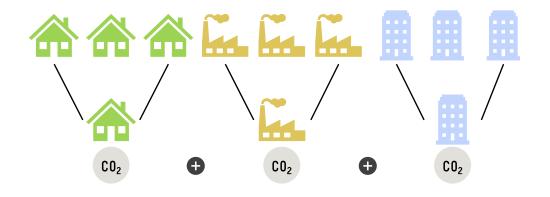
- Comparable with CO2 limit values in climate declarations
- Affordability bias
- Identification of solutions on building level
- Doesn't allow to research emission causes on micro level


Existing data landscape


Database information gathering

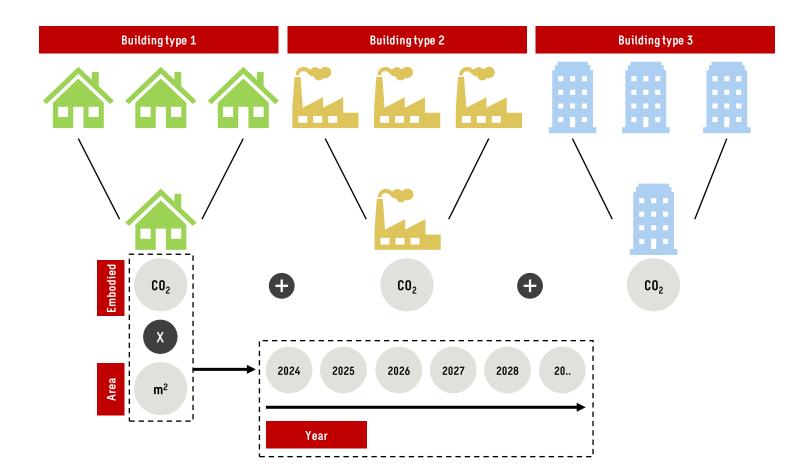
A B	С	D	E	F	G	Н	<u> </u>	J	К	L	M	N	0
Database name	Brief description	Responsible organization	Link to organization	Link to database	Datatype	Relevant key data	Coverage area	Accessibility	Access cost	Format	Responsible for datainput	Update freequenzy	Integration L
1 BBR - Building and Housing Register	can find information about all buildings and	Ministry of Taxation (Skatteministeriet (Vurderingsstyrelsen))	https://vurdst.dk/	https://bbr.dk/forside	Building registe	Area Facade material Roof material Type of heating Number of floors	Nationwide	Public	Free	Structured database	Building owner	Continuosly	No
2 Protected and listed buildings	buildings in Denmark maintained by the	Ministry of Culture (Kulturministeriet (Slots- og kulturstyrelsen))	<u>https://slks.dk/</u>	<u>https://www.kulturary</u> dk/fbb/index.htm	Register for preserved buildings	Area Facade material Roof material Type of heating Number of floors Material description	Nationwide	Public	Free	Structured database	Data comes from BBR and Ministry of Culture	Continuosly	No
3 Waste data system (ADS)	database that collects information about	Ministry of Environment (Miljøministeriet (miljøstyrelsen))	<u>https://mst.dk/</u>	<u>https://www.ads.mst</u> <u>dk/Default.aspx</u>	Waste register	Type of waste (sector) Type of waste (category) Amount of waste	Nationwide	Public	Free	Structured database	Companies responsible waste treatment	Minimum yearly. Also possible to update continuosly	No
4 Energy label	consumption of buildings visible and serves as a type of product declaration. The energy	and Utilities (Klima-, Energi-	https://ens.dk/	https://old.sparenergi. dk/forbruger/vaerktoej er/find-dit- energimaerke		Calculated energy demand	Nationwide	Public	Free	Structured database	Energy labeling of buildings can only be carried out by companies that are certified to perform energy labeling. Certification requires a quality management system.	Continuosly	No

Archetype or sampling approach for monitoring

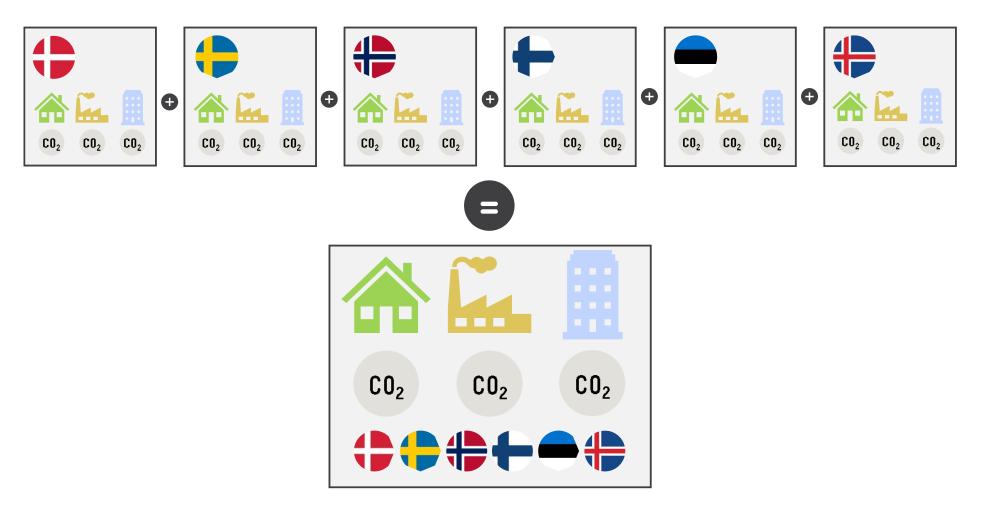


Archetype modeling

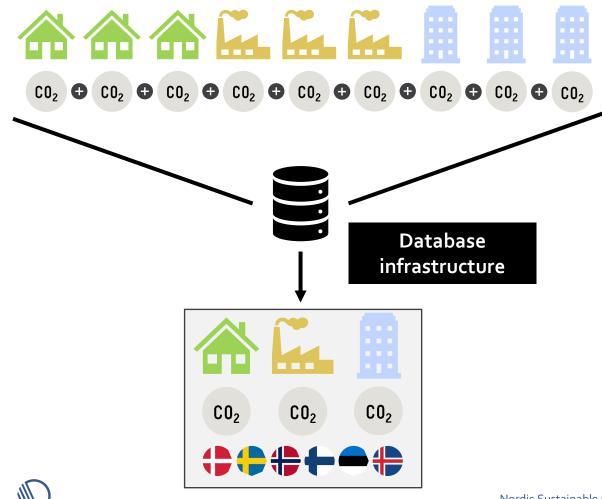
- Suitable for developing building stock scenarios or top-down target-based limit values
- Smaller representative samples can be used for monitoring the entire building stock



- Risk of systematic errors
- Representativity depends on data input
- Database infrastructure doesn't exist


Archetype modeling

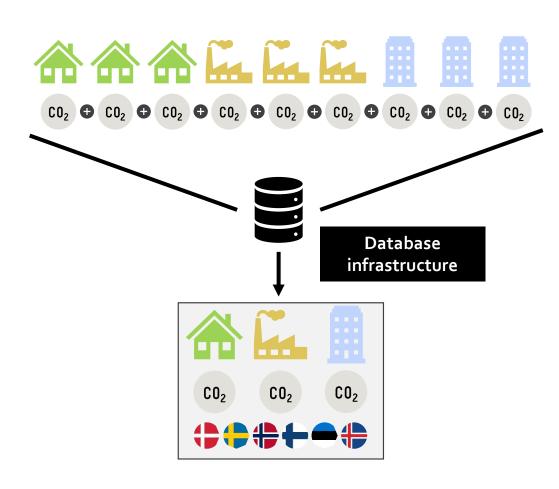
Available attributes from existing building information databases


Archetype modeling

National emission factors

Climate declaration and EPBD

Enabling a complete sample approach



The introduction of climate declarations in the Nordic countries in the forthcoming years.

The EU Energy Performance of Building Directive Article 7 states that Member States shall ensure that the life-cycle Global Warming Potential (GWP) is calculated in accordance with Annex III and **disclosed through the energy performance certificate of the building**

58

Complete sample of climate declarations

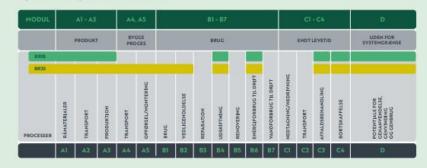
- With mandatory climate declarations, the suitability for as-is analysis of the building stock is high
- With complete sample, the suitability for developing building stock scenarios or target-based limit values is high

- A large or complete sample of building stock is needed for validity
- Database infrastructure doesn't exist

Complete sample of climate declarations

ANBEFALING #1 FORTSAT

Stramning af CO2-krav til bygninger og styrkelse af LCA-metoden

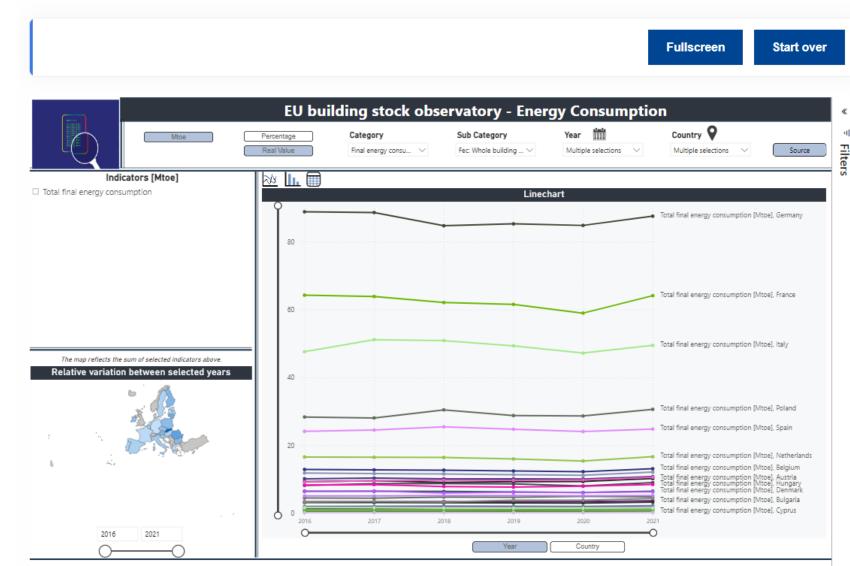

Fælles beregningskerne for LCA-beregninger skal sikre konsistens

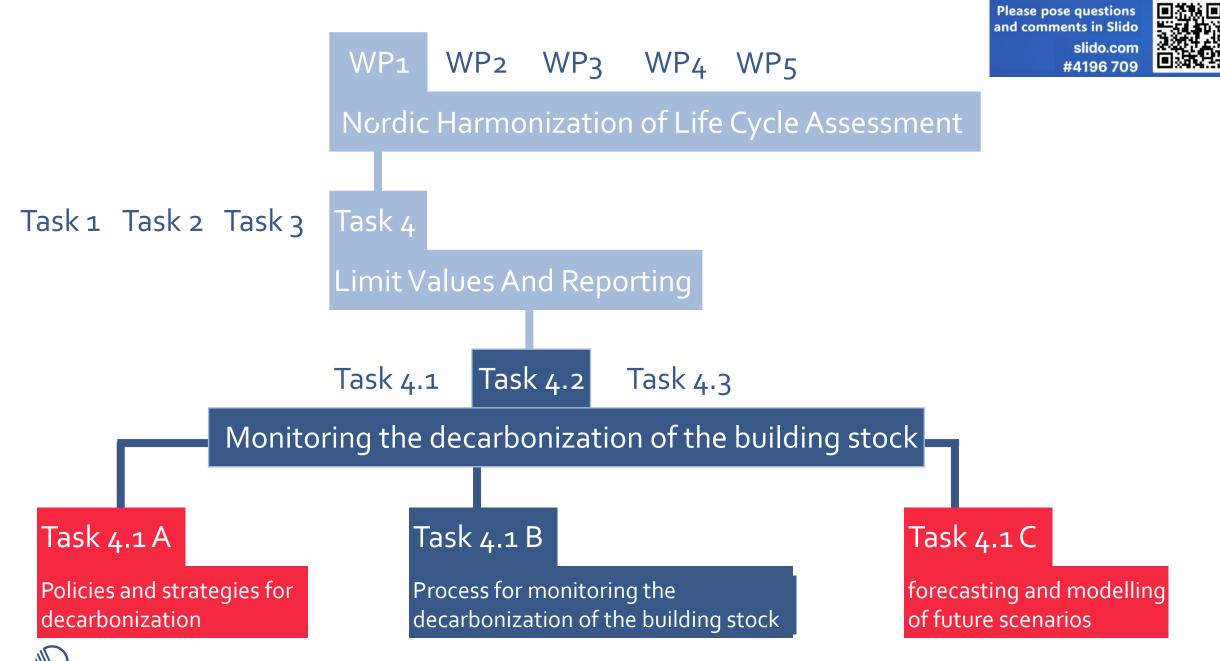
En fælles beregningskerne for LCA-beregninger skal styrke tilliden til beregningerne. Forvaltningen af beregningskernen skal forankres hos en statslig styrelse med ansvar for at kvalificere LCA-beregningskernen gennem udbud af analyser. Private aktører og rådgivere skal kunne udvikle værktøjer, som kan refereres op imod beregningskernen.

Fælles, standardiseret rapporteringsmetode og database

For at sikre ensartethed i rapportering af LCA-resultater, skal der udvikles et fælles standardiseret rapporteringsformat. LCA-resultater skal også samles i en database for at sikre, at viden om bygningers CO2-aftryk let kan deles, analyseres og inspirere på tværs af sektoren.

Figur 24: Forslag til udvidelse af LCA


To ensure uniformity in the reporting of LCA results, a common standardized reporting format must be developed. LCA results should also be collected in a database to ensure that knowledge of buildings' CO2 footprint can easily be shared, analyzed, and inspire across the sector.


Energy Data for building operations

Energy Consumption

View and extract available indicators data items.

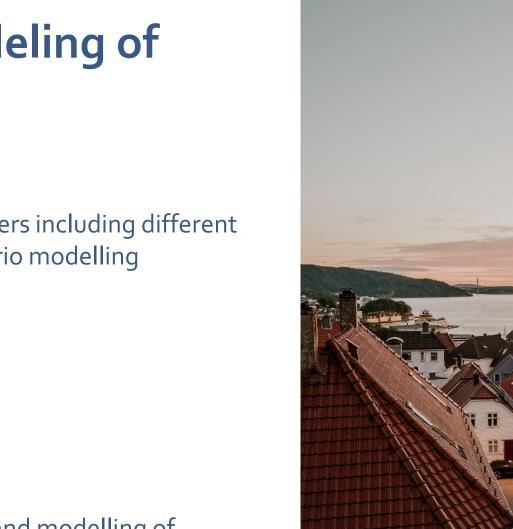


National and international policies and strategies for decarbonization Task 4.2 A

20	30	2035	20	040	2045	2050
70%	55% 🕇				*	110%
	50% 🕇	70%				*
60%	50% 🛧	*				
55	%			•		
*	10 _{TWh} ** F					*
63%	50%*** 🗲		75%	100%****	*	
40%	42,5%					*
	70%) 60%) 55 (63%))	2030 70% ♪ 55% ↑ 50% ↑ 60% ♪ 50% ↑ 55% ♪ 60% 10 _{Twh} ** f 63% ♪ 60%*** f 40% ♪ 60%	70% 55% ↑ 70% 55% ↑ 50% ↑ 70% 60% 50% ↓ 50% ↓ ↓ 60% 107wh* ↓ 63% 50%** ↓	70% 55% 1 1 70% 55% 70% 1 60% 50% 10% 1 55% 10 1 1 63% 50%** 1 1	70% ♪ 55% ↑ 70% ♪ 55% ↑ 70% ♪ 50% ↑ 70% ♪ 60% ♪ 50% ↑ 50% ↑ 60% ♪ 50% ↑ 10 ⁺ ⁺ ⁺ ↓ 63% ♪ 50%*** ↓ 63% ↓ 50%*** ↓	70% 55% 1% 1% 1% 70% 50% 70% 1% 1% 60% 50% 1% 1% 1% 50% 10_{TWh}^{**} 10_{TWh}^{**} $100\%^{***}$ $100\%^{***}$ 63% $50\%^{**}$ $100\%^{***}$ $100\%^{***}$ $100\%^{***}$

* Norway aims to become a low-carbon society by 2050

** Norway aims to reduce energy consumption in buildings by 10 terawatt-hours by 2030


*** Sweden aims to improve energy efficiency by 50% in tearms of energy usage by the year 2030 compared to levels in 2005

**** The government of Sweden changed the term from "renewable" to "fossil-free" in the summer of 2023 to include nuclear power

***** Iceland aims to reduce the dependence of fossil fuels and promoting the use of renewable energy sources and climate-friendly fuels

Forecasting and modeling of futures scenarios Task 4.2 C

- Review of 4 initiatives/research papers including different elements for forecasting and scenario modelling
- Elements are categorized:
 - Emission factor
 - Building stock
 - Building design 🔝
- Recommendations for forecasting and modelling of futures scenarios based on the analysis findings

#4196 709

	Building emissions factors	Building stock	Building design
Environmental modelling of building stocks – An integrated review of life cycle-based assessment models to support EU policy making	 Energy and material production efficiency Change in heating, cooling and illumination Recycling and reuse of materials. Energy consumption and future electricity mix changes 	 Building stock size and renovation plan Building stock growth based on population Building typology requirement change 	 Dwelling size development Building characteristics change due to climate Rate of timber and low impact concrete typologies
Dynamic Environmental Sustainability Assessments of the Built Environment: Coupling MFA and LCA	 Energy decarbonization Less carbon intensive materials (Materials within Europe & less waste) Reduced energy from construction site Reduced heat and electricity requirement in buildings 	 Growth in building stock based on students and faculty Model the lifetime of research and educational purposed buildings the same as residential 	 Increase in area-to-user ratio New construction with less carbon intensive material for the load bearing structure
IEAs pathway to 1.5-degre	 Energy decarbonization Tripling renewable energy and other low emissions energy resources Increase the amount of energy demand from the building sector 		
UKGBC's Whole Life Carbon Roadmap	 Decrease the operational carbon emissions Decrease in average energy usage Reuse materials for a reduction in virgin material demand Reduction in embodied emissions 	 Increase in building stock based on population Reduction in demand of office and residential buildings Retrofit existing homes 	 Reduction in material usage through design efficiency

Forecasting and future scenarios

Emission factors

- Energy decarbonization
- Reduced energy and heating demand
- Recycled materials
- Material production optimization

Building stock

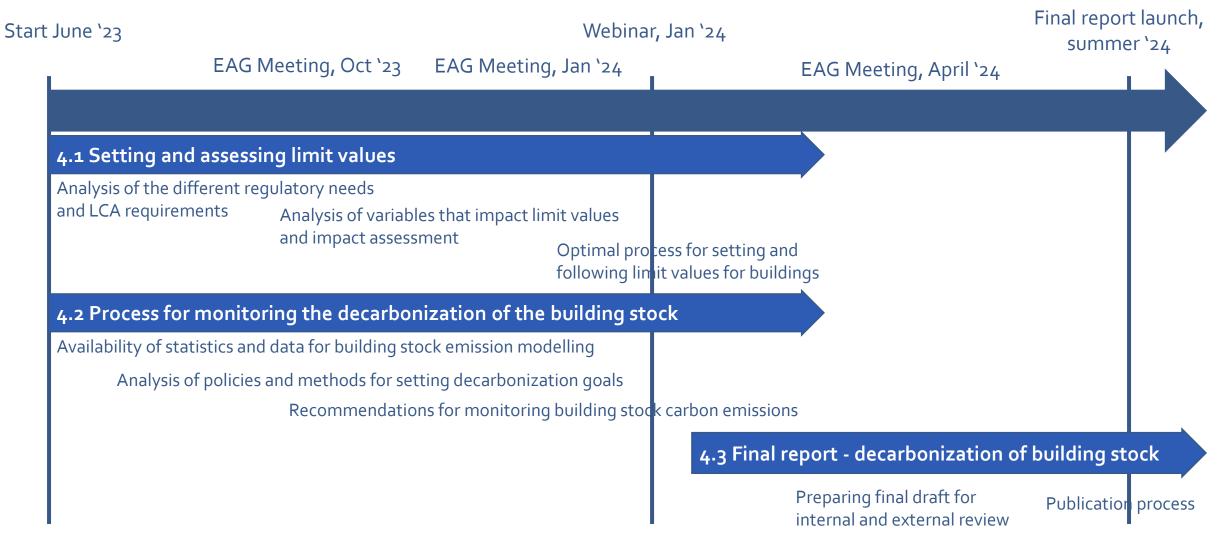
- Building stock size
- Building stock typology
- Renovation rate (size)
- Population size and demographic development

Building design

- Building size (area requirements)
- Building characteristics (architecture)
- New "low carbon" materials
- Design effeciency

A draft report on **"Monitoring the decarbonization of the building stock" (Task 4.2)** will be published for commenting to webinar participant

Please comment before 15-02-2024



(i) Start presenting to display the audience questions on this slide. Nordic Sustainable Construction

Next steps

Inputs to project draft reports

- The 1st draft report on "Setting and Assessing Limit Values in Nordic Countries" has already been sent you.
- You can also find it via the webinar website
- We would greatly appreciate your inputs and comments by Feb. 2nd.
 - Please send these to <u>sm-dk-lca-and-co2-limits@sweco.dk</u>
- The 2nd draft report on "Monitoring decarbonization of the building stock " will be made available for commenting after the webinar.
- It will also be available via the webinar website
- We would appreciate your inputs and comments by Feb. 15th.
 - Please send these to

sm-dk-building_stock_decarbonization@sweco.dk

Thank you for your time!

Nordic Sustainable Construction

0